Dept., “Patterns of first passage probabilities in population monitoring data”, This was an informal almost philosophical talk where I tried to ennunciate some of my ideas about the meaning of parsimony in population modeling
Patternsoffirst-passageprobabilitiesinpopulationmonitoringdata
Confronting the theory with data(Holmes & Fagan 2002)
•141 chinookand 41 steelhead 30-70 year time seriesfrom ESUsin WA, OR, and CA
01020304050607080
1 9 5 2 1 9 5 5 1 9 5 8 1 9 6 1 1 9 6 4 1 9 6 7 1 9 7 0 1 9 7 3 1 9 7 6 1 9 7 9 1 9 8 2 1 9 8 5 1 9 8 8 1 9 9 1 1 9 9 4 1 9 9 7
r e d d s p e r m i l e
parameterization evaluation
1),(~
),0(~
)log()log(
)log()log(
2,2,,111
,1
=+=++=
++++
bf NormalNyNbN
anptpptnpttt
pttt
σ β ε σ ε ε ε µ
No density-dependencei.i.d. errors -> no auto-correlationsHolmes (2001)
Corrupted Diffusion Approximation (CDA)really a ‘Corrupted Random Walk Model’
Theory makes a prediction about the distribution of mu_hat*random walk*N_t+1/N_t variance is related in a particular way to mu_hatvariance
1 5 9 13 171 5 9 13 17
1 5 9 13 17
1 5 9 13 17
True
µ
and
σ
µ
ˆ
µ
ˆof pdf